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Initial population
•Pseudo- or Quasi-random

•Sequential or Parallel diversification

•Heuristic

11/3/15 4Population-based metaheuristics: common concepts



Initial population: parallel diversification
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Initial population
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Stopping criteria
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•Static: a priori knowledge of when the search will end. 
E.g. a maximum number of iterations.

•Adaptive: no a priori knowledge. E.g. number of 
iterations without improvement.

•There are also criteria which are specific to P-
heuristics. 
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Evolutionary algorithms
•Genetic algorithms 
•Evolution strategies
•Evolutionary programming
•Genetic programming

•They are all inspired by the prinicple of heredity from 
parents to offspring in natural evolution.
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Evolutionary 
computation



Evolutionary algorithms
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Evolutionary algorithms
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Genetic algorithms
•J. Holland 1970, USA. Applied to optimization in the 
1980s. 

•Classical characteristics: binary representation. 
Crossover + mutation. Parents are replaced by 
offspring.
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Evolution strategies
•Rechenberg and Schewefel, 1964, Berlin. Used in 
continuous optimization.

•Classical characteristics: real-valued representation. 
Elitist replacement (offspring do not necessarily replace 
parents). Deterministic selection (fitness). No single 
step size in mutation.

•Efficient in terms of time complexity. 
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Evolution strategies
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Evolutionary programming
•L. Fogel, 1960s, USA.

•Classical characteristics: real-valued representation. 
No recombination. Normally distributed mutations. 
Deterministic parent selection, stochastic replacement 
selection (n species, tournament selection). 

•Less used then the other families of EAs.
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Genetic programming
•J Koza, 1980s. The individuals are themselves 
programs (not fixed length strings, as in the other 
methods).

•Classical characteristics: deterministic parent 
selection, generational replacement. Crossover: sub-
tree exchange. Mutation: random changes in the tree.

•Computationally intensive. Used for data mining.
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Genetic programming: symbolic 
regression
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Reading advise
•Sörensen, Kenneth. "Metaheuristics—the metaphor 
exposed." International Transactions in Operational 
Research 22.1 (2015): 3-18.
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